A (49, 16, 3, 6) Strongly Regular Graph Does Not Exist
نویسندگان
چکیده
منابع مشابه
A Distance-Regular Graph with Intersection Array (5, 4, 3, 3; 1, 1, 1, 2) Does Not Exist
We prove that a distance-regular graph with intersection array (5, 4, 3, 3; 1, 1, 1, 2) does not exist. The proof is purely combinatorial and computer-free.
متن کاملQuantum nonlocality does not exist.
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that th...
متن کاملOn the Strongly Regular Graph of Parameters
In an attempt to find a strongly regular graph of parameters (99, 14, 1, 2) or to disprove its existence, we studied its possible substructure and constructions.
متن کاملGeneralized Krein Parameters of a Strongly Regular Graph
We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility conditions are deduced. Furthermore, we establish some relations between the classical Krein parameters and the generalized Krein parameters.
متن کاملA Distance-Regular Graph with Strongly Closed Subgraphs
Let be a distance-regular graph of diameter d, valency k and r := max{i | (ci , bi ) = (c1, b1)}. Let q be an integer with r + 1 ≤ q ≤ d − 1. In this paper we prove the following results: Theorem 1 Suppose for any pair of vertices at distance q there exists a strongly closed subgraph of diameter q containing them. Then for any integer i with 1 ≤ i ≤ q and for any pair of vertices at distance i ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1989
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(89)80014-9